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ONE E X A M P L E  OF M A G N E T O H Y D R O D Y N A M I C  S T O K E S  

F L O W  A R O U N D  A S E L F - P R O P E L L E D  S P H E R E  

V. I. Yakovlev UDC 537.8 

Magnetohydrodynamic flow around a sphere equipped with an internal source of electromagnetic 
fields in the form of a variable magnetic dipole is investigated in the Stokes approzimation. 
This dipole is capable of imparting translational motion to the sphere relative to the liquid. The 
properties of streamline flow in the self-propelled mode of operation of the source due to the 
influence of distributed volumetric forces on the character of the flow are demonstrated. 

The creation of magnetohydrodynamic (MHD) motors for seawater and of the means for controlling 
the flow pattern using volumetric electromagnetic forces (VEFs) has now become a practical task [1]. The 
corresponding problems of magnetohydrodynamic flow around bodies have long attracted the interest of 
researchers. The closed problem of MHD flow around a self-propelled body with an internal source of fields 
was first solved by Khonichev and Yakovlev [2]. The steady Stokes motion of a sphere caused by a variable 
magnetic dipole displaced from the center of the sphere was investigated for the limiting case of a strong skin 
effect. The study of this system was continued and new results were obtained that were not published at that 
time. They involve the influence of the parameters of the source on the translational velocity of the sphere 
and the size of the separation zone; one of the unexpected results is related to the possibility of the sphere 
moving in the opposite direction from that of the force exerted on the dipole by the magnetic field of currents 
in the liquid. 

These results are more curious than practical, but they are of scientific interest, since they demonstrate 
the capability of distributed VEFs for altering the hydrodynamic flow pattern. 

1. In the present work, we consider the self-propelled mode of flow over a sphere in a conducting liquid. 
The sphere is equipped with an electromagnetic source, for which we take a variable magnetic dipole displaced 
from the center of the sphere and oriented as shown in Fig. 1. The sphere is assumed to be nonconducting 
and nonmagnetic, its radius is a, the conductivity of the liquid is a, and the frequency of variation of the 
magnetic moment is w. 

A qualitative explanation of why a sphere with such an internal source can be self-propelled consists in 
the following. The variable magnetic dipole under consideration produces in the surrounding liquid a vortical 
electric field and vortical currents having only an azimuthal t~ component. The force F = (-Fo + Fe 2i'~t) ez 
exerted by the magnetic field of these variable circular currents on the magnetic dipole consists of two parts - -  
constant and variable. The constant component, which differs from zero when the dipole is displaced from 
the center of the sphere, is an attractive electromagnetic force exerted on the sphere. It cannot be balanced 
by a pressure gradient in the liquid, since the VEFs f = (1/c)[j x HI generated in the liquid are not potential 
forces in general, so that the force -Foez produces translational motion of the sphere relative to the liquid. 

The problem is solved in the Stokes approximation under additional assumptions that provide for 
splitting of the general MHD problem into purely electrodynamic and hydrodynamic parts. This is possible 
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if the second term in Ohm's law j = (r{E + (1/c)[v x H]}, is negligibly small compared to the first: 

(1/c)l[v • H]I << IEI, (1.1) 

i.e., the current density does not depend on the velocity field. In this case, the E and H fields, as well as the 
field of volumetric forces f, do not depend on the velocity field, and the electrodynamic part of the problem 
can be separated from the hydrodynamic part. Since the vortical electric field is proportional to w, condition 
(1.1) is satisfied at sufficiently high frequencies: 

>> (~0/~). (1.2) 
Here v0 is the velocity scale, determined in the course of the solution. 

2. The electrodynamic problem of a variable magnetic dipole in a spherical cavity within an unbounded 
conducting space that arises here is solved using the vector potential A = HoaA(r, O)eiWtea, where H0 = 
mo/a 3. The dimensionless function Air , O) satisfies the equation 

curl curl[A(r, 0)e~l = { -(2i/62)A(r'O)eao fOrfor r < l r  > 1, (2.1) 

(6 = c[2V~-~--da is the dimensionless thickness of the skin layer), the boundary conditions of continuity of the 
function A and its derivative aA/Or at the surface of the sphere (r = 1), and the condition of boundedness 
at infinity. The solutions inside (A1) and outside (A2) the sphere have the form 

A, - Am(r ,O)+ }2~,rZPr A~ = F_.b, , /2(~)Pr (2.2) 
!----1 I = l  

Here s - (1 - i )16 ,  P~(cosO) - - s inO(d /dcosO)[Pt (cosO) l  and I-It+,/2 are associated Legendre functions and 
secondary Hankel functions of half-integral order, and Am(r, 0) = r sin O/(e 2 + r 2 - 2re cos 0) 3/2 is a function 
that gives the vector potential of the magnetic dipole. The latter can also be expanded in a series in P~(cos 0) 
with coefficients in the form of powers of e/r, where e = d/a is the relative displacement of the dipole from 
the center of  the  sphere, 

OO 

A. = -(11r ~) ~(elr)'-'P; (cos 0). 
lffil 

This makes it possible, using the boundary conditions at the surface (r - 1), to determine the coefficients bt 
and el from (2.2): 

bl --- .H(2 ) fs ~ c! = w(2) [ s~ ~1-1. 
" 1-1-I+1/2~ ] ~/-I-1-1-1/2~ ] 

Thus the solution of the electrodynamic problem is completed. 
Hence, the unknown force exerted on the dipole by the magnetic field of currents in the liquid is 

determined by the gradient of this field at the location of the dipole. The result for the time-averaged quantity 
Fz has the form 

oo e;(cos0) 1 (2.3) 
( F ' ) - - F ~ 1 7 6  F'(e '6)=-Real~"~'~(/-1)c'~Z-2 s-~n0 0=0" 

I--2 

The volumetric electromagnetic forces and the curl of these forces are calculated independently of the velocity 
field as f -- (~/c)[E x H]. The result reduces to the form 

fT=f~ 
, [o ] 

fo = fo ~ Real iA* ~-~ (.4 sin 0) - iA (.4 sin O)e 2i~~ , f,, = 0, 
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curl f = f0 [(I)0(r, O) + Real(~(r, O)e2i~~ 
a 

r O0 Or ' r 0"-o-C~ f 0 =  2c 2 

(Here and below, complex-conjugate quantities are marked by asterisks.) It is seen from these equations that 
the force f and the curl of forces, curl f, have both a stationary and an oscillating (with a frequency 2w) 
component, and they are of the same order of magnitude. Because of this, the investigated flow also comprises 
analogous parts. 

3. The hydrodynamic part of the problem reduces to the solution of the equations 

0 W  1 
d i v V = 0 ,  c u r l Y = W ,  ~ + v c u r l c u r l W = - c u r l f ,  

Ot p 

which contain the curl of the electromagnetic forces f. In connection with the linearity of these equations, the 
stationary and oscillating components in the velocity field are determined independently of each other. At 
the high frequencies under consideration (1.2), the oscillating component is small compared to the stationary 
component (it is not given here). 

The problem for the stationary flow component comes down to determining the dimensionless stream 
function ~b(r, 0) and the vorticity w(r,  0), introduced using a certain velocity scale rio: 

r0 
V = rocurl[r g)e,], W = - -  w(r,  e)eq. 

a 

The functions r and w satisfy the equations 

[ OA2 0A~I . curl curl[w(r, 0 ) e a ] -  2f~ 1 Real i (3.1) p,,r--; ,- oo  je., 

curl curl[r O)e~] = w(r,  0)ea (3.2) 

and the boundary conditions 

w = O, r = (1 /2 ) (uo / ro ) rs inO = -(1/2)(uolro)rP~(cose) for r --* 0% 

0._~ = 0  f o r r = l .  (3.3) 
r = O, Or 

The dimensionless complex on the right side of Eq. (3.1) represents the ratio of the scales of the electromagnetic 
and viscous forces, i.e., the square of the Hartmann number. We have already emphasized that the velocity 
scale of the stated problem is undefined. It seems intuitively true that the characteristic velocity of the flow due 
to the applied electromagnetic forces is such that the viscous forces are balanced, to order of magnitude, by 
the volumetric force, and, hence, the aforementioned dimensionless complex equals unity. From this condition 
we determine the quantity 

ro = ~ H2"-"---~a l (3.4) 
pc2-----'~ = 2~r pv 6 5, 

which is used temporarily as the velocity scale. 
In conditions (3.3), u0 is the velocity of the oncoming stream (in the coordinate system of the sphere). 

Since in the problem of a self-propelled sphere under consideration, the velocity of the latter is unknown, 
boundary conditions (3.3) must be supplemented by the equation of motion of the sphere, which in the case 
of steady motion reduces to the equality 

(Fz) + Tz = 0, (3.5) 

where (Fz) is defined in (2.3), Tz = 2~'a 2 / ( a r t  COS 0 -- ~rr0 sin 0)sin 8 d0 is the projection of the resultant 
0 

viscous stresses art = -p(1, O) and ar,e = pv(ro /a)w(1 ,  O) applied to the surface of the sphere by the liquid. 
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The pressure distr ibution over the surface of the sphere is found from the equation of motion of the 
liquid and is expressed in terms of (f0) and the quanti ty (~o/a)pv(O/Or)(rw)l r .. The shear stresses a r e  

=1 
determined by the vorticity at the surface of the sphere. The result of the calculations for Tz has the form 

" l .u] O w  sin2(O)dO}" 
0 0 

The differential operators in Eqs. (3.1) and (3.2) coincide with the operator in Eq. (2.1). The solutions 
for r and to can therefore be constructed by separating the variables if the function 

1 

= 1=1 

on the right side of (3.1) is represented as an expansion in associated Legendre functions P~(cos 0). One can 
M 

show that the product  P~(cosO)(d/dO)P~,(cosO)is represented as a finite sum 2 Cw,,~P~+t,_2,(cosO), where 
n=0 

(l + 1')/2 - 1, if l + l' is an even number,  

M = (l + l' - 1)/2, if l + l' is an odd number. 

Solutions of Eqs. (3.1) and (3.2) in the general case (2.2) are therefore obtained in the form of double series. 
The awkwardness of these solutions hinders their physical analysis, nullifying the advantages of the analytical 
solution over a numerical solution. Therefore, here we investigate the relatively simple case 

= d/a << 1 (3.7) 

of a small displacement of the  dipole from the center of the sphere, in which we can be confined to a small 
number of series terms in the  solution. At the same t ime, this solution is not trivial; it demonstrates  interesting 
properties of the  flow around a sphere set in motion by an internal source of fields, and it lets us give them a 
physical explanation. 

In satisfying condition (3.7), we retain only the terms of zeroth and first order with respect to the 
parameter e in the  expressions for the field of forces f and the thrus t  F. Then, the right side of (3.1) is easily 
reduced to the  required form: the  sum over the functions PI 1 (cos 0): 

0A2 - ;  = 1 Real i = ~i(r)P~(cosO), 
r O0 Or ] 

�9 l(r) = Real H;12(s)- mO) H;/2( 0 + H;/2(s0 , (3.8) 

362 1 1 Real is*H3/2(sr)H~/2(sr), 
�9 2 ( 0 =  2 1 5/2(s)12  

~ 3 ( r )  " - e 3 6 2 R e a l  Hs/2(.~)-Hr ) H3/2(sr) ~ r H~/2(sr) - -  2 H s * / 2 ( s r ) ~ r  r H3/2(sr) �9 

(Here Hv are second Hankel functions //(2).) Series (2.3) for the dimensionless thrust  begins with a term 
proportional to e, and in the  approximation under consideration we have 

Fl(e,  6) = -3~  Real H312(s) = 6~ 4 + 146 + 1262 (3.9) 
HT/2(s) (2 +'126 + 15o~) 2 + [2 - 1562(1 + 6)] 2" 

The solution of Eq. (3.1) with the  right side (3.8) bounded at infinity has the form 

3 1 co l+ l  --1 

1=1 r 
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and Eq. (3.2) has the s-lution 

3 

r  0) = ~ r 0), 
I = l  

c~t 1 
Ct(r) = /~ l r  -(z+l) +/~tr ~ + 2 ( 2 / -  1) r-(t-1) + ~ 7t(r), 

- 1 
= 

1" 

')] dx. 

(3.11) 

The constants at,  3t, and/~t are determined from boundary conditions (3.3) and Eq. (3.5). From the condition 
at infinity we get the equations 31 = -uo/2~)o, 32 = 0, and ~3 = 0. To use (3.5), we first note that  the first 
integral in (3.6) is proportional to ~, since (f0) differs from zero only for a dipole displaced from the center of 
the sphere: 

4562 3 1 iH~/2(sr)as/2(sr) 
{f0(r, 0)} = - ~  T f0 sin 0 ~-~ Real H~/2(s)HT/2(s) 

The first term from the sum (3.9), also due to the displacement of the dipole from the center of the sphere, 
makes a nonzero contribution to the second integral of (3.6). We finally have 

Tz = 21ra2{3eHXReal iH3/2(s)Hh/2(s) 2 -  oo dx] 

1 

Using Eq. (3.4) for the scale fro, from Eq. (3.5) we determine 

riHz/2(s)H~12(s) 1 gz/2(s)] 1 oo 
Ot I = - - 3 C  62Real l H~/2(s)Hh/2(s ) + 2 Hr12(s)] - 5 /X2r  dx. 

The remaining constants are easily found from the kinematic conditions (3.3). Here we only give the expression 
for the parameter ill, which determines the liquid velocity at infinity: 

ra" l no,]. (3.12) B1 = - ~  t-~'r Ir=l + 271(1) + 

4. An analysis of the solution shows that  the actual velocity scale of the flow that  develops differs 
from (3.4), and the value v0 = (3/4)(62/140)50 = (3/140)(aH2/81rpu) is more suitable. This fact does not 
invalidate the arguments  used to derive (3.4). It is related to the fact that  the characteristic size over which 
the velocity varies from zero (at the surface of the sphere) to its characteristic value does not equal the radius 
of the sphere, as tacitly assumed in introducing v0, but Mso depends on the thickness of the skin layer. 

The investigated velocity field, as follows from (3.10), is sum of two parts, V = V0 + eV1. The first 
is described by the  te rm (3.10) with a number I = 2 and does not depend on e; it corresponds to a central 
dipole and was investigated in [3]. The presence of the displacement, as noted earlier, can make the sphere 
self-propelled. It seems that  the motion of such a sphere relative to the liquid is directed along the line of 
action of the force F,  i.e., in the  direction of the negative z semiaxis. In the coordinate system of the sphere, 
therefore, the flow velocity at infinity should be directed along z, and its magni tude should be u0 = -2/3150. 
Bearing in mind that  /31 of (3.12) is proportional to ~, and using the new velocity scale, we represent the 
expression for u0 in the form 

3 aH 2 2~1 140.4 
u0 = e 14--0 87rpu u(6), u(6) = e 362 (4.1) 

For the case of a strong skin effect, i.e., for 6 << 1 (see [2]), the constant fll of (3.12) can be expanded in an 
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asymptotic series in powers of 5. The result for u(5) has the form 

[ g3 + 0(52)] . (4.2) u(6)  = 14052 [1 - 6 

The dimensionless thrust  (3.9) for 6 << 1 is 

F , (e ,6)  = 3e 1 - ~ 6 + O(62 ) . (4.3) 

It is seen from (4.1) and (4.2) that  for 6 << 1, the velocity u0 is proportional to 52 (like the velocity V0 
away from a central dipole [3]) and goes to zero as 5 --+ 0. At first glance, this result seems at variance with 
Eq. (4.3), according to which the electromagnetic thrust differs from zero even for 6 = 0. In fact, there is 
no contradiction, since for 6 = 0 the electromagnetic forces and their curl in the liquid outside the sphere 
identically vanish. The  total force exerted on the sphere also vanishes, since the surface electromagnetic forces 
lead to a pressure redistribution in the liquid over the surface of the sphere, and the resultant pressure force 
on the sphere from the liquid balances the electromagnetic thrust.  For 6 = 0, we are therefore dealing with 
the strange situation in which, in the absence of motion, the solid body experiences "drag" on the part of 
the surrounding liquid (pressure drag), which balances the electromagnetic thrust.  (As we shall note below, 
an almost analogous situation arises for 6 = 6. __ 1.) For 6 > 0, the thrust  exceeds the pressure drag and the 
sphere goes into motion relative to the liquid. 

The dimensionless thrust  (3.9) as a function of 6 for arbitrary values of 6 and the dependence u(6) are 
given in Fig. 1 (solid and dashed curves, respectively). It is seen that  the thrust  has a constant direction for all 
5 and decreases with increasing 3. It is seen from the graph of u(5) that  the maximum dimensionless velocity 
of the sphere, reached at 6 ~ 0.25, is close to unity. Therefore, evo actually characterizes the scale of the 
translational velocity of the sphere. As can be seen from Fig. 1, the motion studied has another peculiarity: 
at 5 > 6. _ 1, the function u(5) takes negative values, whereas F1 is positive. This means that  for 6 > 5. 
the sphere moves in the opposite direction from the thrust  (the force exerted on the dipole by the magnetic 
field from currents in the liquid). The  possibility of negative velocities can also be seen from the asymptotic 
behavior (for 5 >> 1) of the expression 

u(6)= 224 1 ( 1 )  
45 6 4 + O ~ . 

To understand the reason for this peculiarity in the motion of the sphere and obtain an idea of the 
character of the flow around a self-propelled sphere, let us investigate the velocity field, which comprises V0 
and the additional velocity field V l  proportional to e. This additional vector field is determined by the first 
and third terms of (3.11) and can be represented in the form 

3 aHg {[X!l)(r)cos 0 + X~2)(r)cosOsin 20ler + [x~l)(r)sinO + X(2)(r) sin 3 0]e0 }, 
V1 = e 14----0 8~rpv 

( X! I) 

X! 2) 

X~ I) 
4 140 
3 362 

_2 (~b, + 6~b3) 
r 

30 
r 

I d  
r ~rr [r(~b] + 6~b3)] 

151 d 
2 r dr (r~b3) 

(4.4) 

The qualitative behavior of the functions appearing in (4.4) is represented in Fig. 2 by curves for a 
fixed value of 5 = 0.25, which corresponds to the maximum sphere velocity. It is seen that  as r --+ oo, the 

functions X! 1) and X (U asymptotical ly approach the values u(g) and -u (5 ) ,  respectively (horizontal bars), and 

the functions X! 2) and X~ 2) approach zero. The absolute values of the functions have sharp maxima near the 

surface of the sphere, with the maximum values of IX!2)J and JX~z)J exceeding [u(5)J by many times. The flow 
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pattern is therefore characterized by intense" vortical flows around the sphere with characteristic velocities 
considerably exceeding the velocity of translational motion. 

This fact means that  the surface forces exerted on the sphere by the liquid are determined to a 
considerable extent by these vortical flows. Hence, for 6 > 6., the resultant of these forces can balance the 
thrust only if the sphere is moving in the z direction. The flow patterns are given in Fig. 3. Streamlines 
of the total flow, comprising V0 and V1, are given for e = 0.1 and 6 = 0.25, 0.8, 1.0, and 1.5 (Fig. 3a-d, 
respectively). The arrow inside the sphere indicate the direction of the force exerted on the dipole by the 
magnetic field, and the arrows on the streamlines indicate the direction of the flow velocity (relative to the 
sphere). It is seen that  for all 6 for which the translational velocity of the sphere differs from zero, regardless of 
the direction of motion, the flow is detached. The detached zone lies in the stern region, and its size depends 
on 6. For 6 = 1, the translational velocity of the sphere is almost zero and the flow pattern is reminiscent of 
that for a central dipole [3]. Recall that for 6 = 1, the force F exerted on the dipole by the magnetic field is 
balanced by the drag at a zero translational velocity of the sphere, i.e., we have a situation analogous to that 
described above. Only here, in contrast to the case of 6 = 0, the hydrodynamic drag consists of both pressure 
drag and frictional drag. 
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